首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   580篇
  免费   93篇
  国内免费   229篇
地球物理   43篇
地质学   842篇
海洋学   4篇
综合类   5篇
自然地理   8篇
  2024年   5篇
  2023年   6篇
  2022年   13篇
  2021年   11篇
  2020年   13篇
  2019年   17篇
  2018年   27篇
  2017年   21篇
  2016年   21篇
  2015年   30篇
  2014年   26篇
  2013年   50篇
  2012年   63篇
  2011年   30篇
  2010年   21篇
  2009年   40篇
  2008年   32篇
  2007年   28篇
  2006年   36篇
  2005年   37篇
  2004年   40篇
  2003年   29篇
  2002年   28篇
  2001年   35篇
  2000年   16篇
  1999年   25篇
  1998年   36篇
  1997年   28篇
  1996年   27篇
  1995年   13篇
  1994年   16篇
  1993年   13篇
  1992年   18篇
  1991年   21篇
  1990年   7篇
  1989年   5篇
  1988年   5篇
  1987年   5篇
  1986年   1篇
  1985年   1篇
  1984年   4篇
  1983年   2篇
排序方式: 共有902条查询结果,搜索用时 843 毫秒
1.
西秦岭温泉花岗岩体岩石学特征及岩浆混合标志   总被引:14,自引:5,他引:9  
温泉花岗岩体由酸性端元的寄主岩石和暗色微细粒镁铁质包体群及基性岩墙群组成。无岩浆混合作用或岩浆混合作用较弱区段,寄主岩石以似斑状二长花岗岩为主.显示正常的花岗岩结构构造岩浆混合作用强烈区段。岩石的异常结构构造十分发育.矿物之间自形程度差异显著.常见包晶反应、包含结构、交代边、熔蚀边、交代蚕食的港湾状结构构造及交代缝合线、矿物镶边、斜长石异常环带和矿物残留等,多见指示岩浆混合的标志性矿物针状磷灰石。暗色微粒包体中多见寄主二长花岗岩中的捕掳晶。包体的形态、结构构造以及与寄主岩石强烈地成分交换等均是岩浆混合作用的标志。  相似文献   
2.
The Waterman Metamorphic Complex of the central Mojave Desert was exposed as a consequence of early Miocene detachment-dominated extension. However, it has evidence consistent with a more extensive geological history that involves collision of a crustal fragment(s), tectonic thickening by overthrusting and two periods of extension. The metamorphic complex contains granitoid intrusives and felsic mylonitic gneisses as well as polymetamorphic rocks that include marble, calc-silicate, quartzite. mafic granulite, pyribolite, amphibolite, migmatite and biotite schist. The latter group of rocks was affected by an initial series of high-grade metamorphic events (M1 and M2) and a localized lower grade overprint (M3). The initial metamorphism (M1) can be separated into two stages along its high-grade P–T path: M1a, a granulite facies metamorphism at 800–850° C and 7.5–9 kbar and Mlb, an upper amphibolite facies overprint at 750–800° C and 10–12 kbar. M1a developed mineral assemblages and textures consistent with granulite facies conditions at a reduced activity of H2O and is associated with intense ductile deformation (D1) and minor local partial melting. M1b overprinted the granulite assemblages with a series of hydrous phases under conditions of increasing pressure and H2O activity and is accompanied by little or no deformation. M2 developed at lower pressures and temperatures (650–750° C, 4.5–5.5 kbar) and is distinguished by a second local overprint of hydrous phases that reflects an input of aqueous fluids probably associated with the intrusion of a series of granitic dykes and veins. Effects of M3 are confined to the Mitchel detachment zone, an anastomosing early Miocene detachment fault, and are characterized by local ductile/brittle deformation (D2) of the pre-existing high-grade rocks and granitoid intrusives and by the production of mylonites and mylonitic gneisses under greenschist facies conditions (300–350° C, 3–5 kbar). The initial overprint (M1a) represents metamorphism, devolatilization and minor partial melting of supracrustal rocks under granulite facies conditions as a consequence of tectonic and, possibly, magmatic thickening. The increasing pressure transition of M1a to M1b reflects a period of continued compressional tectonism, thrusting and influx of H2O, in part, locally related to crystallization of partial melts. The near isothermal decompression between M1b and M2 probably represents a pre-112-Ma extensional episode that may have been the result of a decompressional readjustment of a thickened crust. Following the initial extensional event, the metamorphic complex remained at depths of 10–17 km for at least 90 Ma until it was uplifted following Miocene extension. M3 develops locally in response to this second extensional period resulting from the early Miocene detachment faulting.  相似文献   
3.
This study explores garnet coronas around hedenbergite, which were formed by the reaction plagioclase + hedenbergite→garnet + quartz, to derive information about diffusion paths that allowed for material redistribution during reaction progress. Whereas quartz forms disconnected single grains along the garnet/hedenbergite boundaries, garnet forms ~20‐μm‐wide continuous polycrystalline rims along former plagioclase/hedenbergite phase boundaries. Individual garnet crystals are separated by low‐angle grain boundaries, which commonly form a direct link between the reaction interfaces of the plagioclase|garnet|hedenbergite succession. Compositional variations in garnet involve: (i) an overall asymmetric compositional zoning in Ca, Fe2+, Fe3+ and Al across the garnet layer; and (ii) micron‐scale compositional variations in the near‐grain boundary regions and along plagioclase/garnet phase boundaries. These compositional variations formed during garnet rim growth. Thereby, transfer of the chemical components occurred by a combination of fast‐path diffusion along grain boundaries within the garnet rim, slow diffusion through the interior of the garnet grains, and by fast diffusion along the garnet/plagioclase and the garnet/hedenbergite phase boundaries. Numerical simulation indicates that diffusion of Ca, Al and Fe2+ occurred about three to four, four and six to seven orders of magnitude faster along the grain boundaries than through the interior of the garnet grains. Fast‐path diffusion along grain boundaries contributed substantially to the bulk material transfer across the growing garnet rim. Despite the contribution of fast‐path diffusion, bulk diffusion through the garnet rim was too slow to allow for chemical equilibration of the phases involved in garnet rim formation even on a micrometre scale. Based on published garnet volume diffusion data the growth interval of a 20‐μm‐wide garnet rim is estimated at ~103–104 years at the inferred reaction conditions of 760 ± 50 °C at 7.6 kbar. Using the same parameterization of the growth law, 100‐μm‐ and 1‐mm‐thick garnet rims would grow within 105–106 and 106–107 years respectively.  相似文献   
4.
Mafic rocks in the Chipman domain of the Athabasca granulite terrane, western Canadian Shield, provide the first well‐documented record of two distinct high‐P granulite facies events in the same domain in this region. Textural relations and the results of petrological modelling (NCFMASHT system) of mafic granulites are interpreted in terms of a three‐stage tectonometamorphic history. Stage 1 involved development of the assemblage Grt + Cpx + Qtz ± Pl (M1) from a primary Opx‐bearing igneous precursor at conditions of 1.3 GPa, 850–900 °C. Field and microstructural observations suggest that M1 developed synchronously with an early S1 gneissic fabric. Stage 2 is characterized by heterogeneous deformation (D2) and synkinematic partial retrogression of the peak assemblage to an amphibole‐bearing assemblage (M2). Stage 3 involved a third phase of deformation and a return to granulite facies conditions marked by the prograde breakdown of amphibole (Amph2) to produce matrix garnet (Grt3a) and the coronitic assemblage Cpx3b + Opx3b + Ilm3b + Pl3b (M3b) at 1.0 GPa, 800–900 °C. M1 and M3b are correlated with 2.55 and 1.9 Ga metamorphic generations of zircon, respectively, which were dated in a separate study. Heterogeneous strain played a crucial role in both the development and preservation of these rare examples of multiple granulite facies events within single samples. Without this fortuitous set of circumstances, the apparent reaction history could have incorrectly led to an interpretation involving a single‐cycle high‐grade event. The detailed PTtD history constructed for these rocks provides the best evidence to date that much of the east Lake Athabasca region experienced long‐term lower crustal residence from 2.55 to 1.9 Ga, and thus the region represents a rare window into the reactivation and ultimate stabilization processes of cratonic lithosphere.  相似文献   
5.
To investigate eclogite melting under mantle conditions, wehave performed a series of piston-cylinder experiments usinga homogeneous synthetic starting material (GA2) that is representativeof altered mid-ocean ridge basalt. Experiments were conductedat pressures of 3·0, 4·0 and 5·0 GPa andover a temperature range of 1200–1600°C. The subsolidusmineralogy of GA2 consists of garnet and clinopyroxene withminor quartz–coesite, rutile and feldspar. Solidus temperaturesare located at 1230°C at 3·0 GPa and 1300°C at5·0 GPa, giving a steep solidus slope of 30–40°C/GPa.Melting intervals are in excess of 200°C and increase withpressure up to 5·0 GPa. At 3·0 GPa feldspar, rutileand quartz are residual phases up to 40°C above the solidus,whereas at higher pressures feldspar and rutile are rapidlymelted out above the solidus. Garnet and clinopyroxene are theonly residual phases once melt fractions exceed 20% and garnetis the sole liquidus phase over the investigated pressure range.With increasing melt fraction garnet and clinopyroxene becomeprogressively more Mg-rich, whereas coexisting melts vary fromK-rich dacites at low degrees of melting to basaltic andesitesat high melt fractions. Increasing pressure tends to increasethe jadeite and Ca-eskolaite components in clinopyroxene andenhance the modal proportion of garnet at low melt fractions,which effects a marked reduction in the Al2O3 and Na2O contentof the melt with pressure. In contrast, the TiO2 and K2O contentsof the low-degree melts increase with increasing pressure; thusNa2O and K2O behave in a contrasted manner as a function ofpressure. Altered oceanic basalt is an important component ofcrust returned to the mantle via plate subduction, so GA2 maybe representative of one of many different mafic lithologiespresent in the upper mantle. During upwelling of heterogeneousmantle domains, these mafic rock-types may undergo extensivemelting at great depths, because of their low solidus temperaturescompared with mantle peridotite. Melt batches may be highlyvariable in composition depending on the composition and degreeof melting of the source, the depth of melting, and the degreeof magma mixing. Some of the eclogite-derived melts may alsoreact with and refertilize surrounding peridotite, which itselfmay partially melt with further upwelling. Such complex magma-genesisconditions may partly explain the wide spectrum of primitivemagma compositions found within oceanic basalt suites. KEY WORDS: eclogite; experimental petrology; mafic magmatism; mantle melting; oceanic basalts  相似文献   
6.
新疆北部中基性岩脉K-Ar表观年龄为187~271Ma,岩性以辉长、辉绿岩以及闪长、闪长玢岩为主,属于亚碱性系列.主量元素、稀土元素以及微量元素分析表明,中基性岩脉经历了源区地壳物质的混合以及侵位过程中的分离结晶作用,并在区域分布特点上受部分熔融程度的影响,而且由于结晶分异和部分熔融的不同,还出现了中基性岩脉系列的成分变异.排除上述岩浆作用的干扰,有证据显示岩脉起源于亏损地幔,由于Nd同位素模式年龄tDM集中在363~769Ma,反映源区是一个古生代时期的新生岩石圈地幔,该地幔源区属于大洋岩石圈地幔.新疆北部广泛出露的中基性岩脉在时间和空间上具有多样性,但是在产状、岩性组合和同位素特征上具有相似的特点,指示研究区在古生代以来具有一个相对统一和完整的源区,推测这个源区与北疆地区古生代以来长期存在的残余洋盆及其相关岩石圈有关.  相似文献   
7.
鲁苏榴辉岩套以广泛分布各类榴辉岩、密切伴生石榴石橄榄岩、石榴石麻粒岩等高压岩石组合 ,普遍发育韧性变形带 ,大量出露燕山晚期碱性花岗岩及深源脉岩为特征。它已经历三迭纪早期华南陆块与华北陆块的碰撞事件、大陆逆掩推覆构造事件及后期白垩纪早期开始的大陆伸展构造事件 ,是我国华南陆块与华北陆块之间的重要过渡单元。  相似文献   
8.
本文报道了南极拉丝曼丘陵“中山站”石榴石变粒岩的岩石学和矿物化学特征;确定了其矿物组合及世代演化关系,利用电子探针分析了其特征变质矿物的化学组成,最后推断东南极拉丝曼丘陵地区曾发生过麻粒岩相变质作用和混合岩化作用。  相似文献   
9.
徐文博  张铭杰  包亚文  满毅  李思奥  王鹏 《地质学报》2022,96(12):4257-4274
塔里木克拉通东北缘坡北、磁海等地二叠纪幔源岩浆活动形成了镍钴硫化物矿床和铁钴氧化物矿床,两者赋矿镁铁 超镁铁岩体的年龄相近(290~260 Ma),主、微量元素和Sr Nd Hf同位素组成相似,分配系数接近的微量元素比值分布于相同趋势线,揭示两者岩浆源区相同,可能为俯冲板片流体交代的亏损地幔或软流圈地幔。两类矿床镁铁 超镁铁质岩中Co与Ni含量正相关,Co主要富集在基性程度高的岩石中;块状硫化物与磁铁矿矿石中Co与Ni相关性差,Co和Ni具有不同的富集机制,Co热液富集作用明显。北山镁铁 超镁铁杂岩体是地幔柱相关软流圈上涌,诱发俯冲板片交代的亏损岩石圈地幔发生部分熔融,形成的高镁母岩浆演化过程中经历壳源混染、硫化物饱和富集镍钴形成铜镍钴硫化物矿床,富铁母岩浆氧逸度高、富水,岩浆分离结晶磁铁矿、叠加热液作用富集钴,形成铁钴氧化物矿床。  相似文献   
10.
We report here U–Pb electron microprobe ages from zircon and monazite associated with corundum- and sapphirine-bearing granulite facies rocks of Lachmanapatti, Sengal, Sakkarakkottai and Mettanganam in the Palghat–Cauvery shear zone system and Ganguvarpatti in the northern Madurai Block of southern India. Mineral assemblages and petrologic characteristics of granulite facies assemblages in all these localities indicate extreme crustal metamorphism under ultrahigh-temperature (UHT) conditions. Zircon cores from Lachmanapatti range from 3200 to 2300 Ma with a peak at 2420 Ma, while those from Mettanganam show 2300 Ma peak. Younger zircons with peak ages of 2100 and 830 Ma are displayed by the UHT granulites of Sengal and Ganguvarpatti, although detrital grains with 2000 Ma ages are also present. The Late Archaean-aged cores are mantled by variable rims of Palaeo- to Mesoproterozoic ages in most cases. Zircon cores from Ganguvarpatti range from 2279 to 749 Ma and are interpreted to reflect multiple age sources. The oldest cores are surrounded by Palaeoproterozoic and Mesoproterozoic rims, and finally mantled by Neoproterozoic overgrowths. In contrast, monazites from these localities define peak ages of between 550 and 520 Ma, with an exception of a peak at 590 Ma for the Lachmanapatti rocks. The outermost rims of monazite grains show spot ages in the range of 510–450 Ma.While the zircon populations in these rocks suggest multiple sources of Archaean and Palaeoproterozoic age, the monazite data are interpreted to date the timing of ultrahigh-temperature metamorphism in southern India as latest Neoproterozoic to Cambrian in both the Palghat–Cauvery shear zone system and the northern Madurai Block. The data illustrate the extent of Neoproterozoic/Cambrian metamorphism as India joined the Gondwana amalgam at the dawn of the Cambrian.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号